Effects of arterial vasodilators on cardiac hypertrophy and sympathetic activity in rats.
نویسندگان
چکیده
In spontaneously hypertensive rats (SHR), the progression (or absence of regression) of cardiac hypertrophy despite adequate blood pressure (BP) control by arterial vasodilators has been attributed to increased cardiac sympathetic activity. We evaluated changes in indices of general and cardiac sympathetic tone in relation to changes in cardiac anatomy during treatment of normotensive rats and SHR with hydralazine, 120 mg/L, or minoxidil, 120 mg/L of drinking water. In SHR, both vasodilators reduced BP rapidly and consistently. Significant increases in heart rate and plasma norepinephrine were observed only in the initial 2 days of arterial vasodilator treatment. After 5 weeks of treatment, marked increases in left and right ventricular sympathetic activity (as assessed by norepinephrine turnover rates) were present, but no increase was seen in heart rate and plasma norepinephrine. Intravascular volume expansion was observed on Day 14 of minoxidil and Day 35 of hydralazine treatment. Prolonged treatment with minoxidil induced significant increases in left ventricular internal diameter, as well as in left and right ventricular weights, but not in the wall thickness of the left ventricle. Treatment with hydralazine did not affect left ventricular weight and caused a small increase in the weight of the right ventricle. In normotensive rats, both vasodilators initially decreased BP, but tolerance developed within 1 to 2 weeks of treatment. Plasma norepinephrine and heart rate showed increases only at Day 1 of either treatment, whereas cardiac sympathetic hyperactivity persisted at 2 and 5 weeks of treatment. Changes in cardiac anatomy were qualitatively similar to those observed in SHR. We conclude that, during treatment of normotensive rats and SHR with arterial vasodilators, cardiac sympathetic hyperactivity persists and may be involved in the cardiac effects of arterial vasodilators. However, other mechanisms, such as chronic cardiac volume overload, may also play an important role, particularly with minoxidil.
منابع مشابه
Role of oxidative stress in the aortic constriction-induced ventricular hypertrophy in rat
Introduction:Severe abdominal aortic constriction above the renal arteries induces arterial hypertension above the stenotic site that is the cause of cardiac hypertrophy. Previous studies have shown that high blood pressure induces myocardial oxidative stress with conflicting results. In the present study, we assessed the effects of acute hypertension on the myocardial oxidative stress an...
متن کاملاثر محافظتی آتورواستاتین بر عضله میوکارد قلب در موش صحرایی با پرفشاری شریانی
Background and Aim: Previous studies have shown that arterial hypertension induces cardiac hypertrophy and myocardial oxidative stress. The aim of the present study was to assess the effects of treatment by atorvastatin, as an antioxidant, to prevent myocardial oxidative stress and cardiac hypertrophy in hypertensive rats. Materials and Methods: In this experimental study, 20 male Wistar rats w...
متن کاملThe Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats
Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...
متن کاملThe effect of resistance training on the expression of cardiac muscle growth regulator messenger genes in obese male rats
Background: Obesity is associated with cardiovascular disease, followed by pathological cardiac hypertrophy. However, physical activity (resistance training) plays a role in modulating some of the intracellular messenger pathways associated with the regulation of pathologic hypertrophy. The aim of this study was to investigate The effect of resistance training on the expression of cardiac muscl...
متن کامل1, 25 Dihydroxyvitamin D3 Protects the Heart Against Pressure Overload-induced Hypertrophy without Affecting SIRT1 mRNA Level
Background and Aims: There has been scant information concerning antihypertrophic effects of vitamin D specifically on its cellular and molecular mechanisms. Sirtuin 1 (SIRT1) is regarded as a key deacetylase enzyme in cardiomyocytes which applies potential cardioprotective effects by functional regulation of different proteins. This study aimed to evaluate the effects of 1, 25-dihydroxyvitamin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 11 4 شماره
صفحات -
تاریخ انتشار 1988